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ABSTRACT
Recognizing and understanding the activities of people
from sensor readings is an important task in ubiquitous
computing. Activity recognition is also a particularly
difficult task because of the inherent uncertainty and
complexity of the data collected by the sensors. Many
researchers have tackled this problem in an overly sim-
plistic setting by assuming that users often carry out
single activities one at a time or multiple activities con-
secutively, one after another. However, so far there has
been no formal exploration on the degree in which hu-
mans perform concurrent or interleaving activities, and
no thorough study on how to detect multiple goals in a
real world scenario. In this article, we ask the funda-
mental questions of whether users often carry out multi-
ple concurrent and interleaving activities or single activ-
ities in their daily life, and if so, whether such complex
behavior can be detected accurately using sensors. We
define several classes of complexity levels under a goal
taxonomy that describe different granularities of activ-
ities, and relate the recognition accuracy with different
complexity levels or granularities. We present a theoret-
ical framework for recognizing multiple concurrent and
interleaving activities, and evaluate the framework in
several real-world ubiquitous computing environments.
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INTRODUCTION
Activity recognition aims to recognize the actions and
goals of one or more agents from a series of observations
[21, 12, 9]. In ubiquitous computing, researchers have
strived at discovering users’ activities and goals through
sensor readings. Successful and accurate activity recog-
nition systems will help provide personalized support
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for many real world applications including health mon-
itoring, education, entertainment, etc. A typical sce-
nario of activity recognition is in assisting the sick and
disabled; e.g. [23] shows that by providing adaptive,
personalized reminders of daily activities, older adults
can adapt to cognitive decline better and remain in their
own homes longer. Furthermore, one can find applica-
tions ranging from security-related applications and lo-
gistics support to location-based services [22, 30]. Due
to its many-faceted nature, different fields may refer to
activity recognition as plan recognition, goal recogni-
tion, intent recognition, behavior recognition, location
estimation and location based services. In the rest of the
paper, we do not explicitly differentiate between “goal
recognition” and “activity recognition” since they are
essentially trying to solve the same problem.

In real world situations, we intuitively find that users
often pursue several activities in a concurrent and/or
interleaving manner. However, how often does it occur
that users pursue several goals at once in a concurrent
and/or interleaving manner? As often referred to as
one-track-mind, are we, as humans, often pursue one
goal to the end before starting another? Furthermore,
if humans often pursue several goals in a concurrent and
interleaving manner, are we able to detect such complex
social and behaviorial patterns from sensors alone? Do
these goals have any deep association with the algorith-
mic complexity of the solutions that are aimed at rec-
ognizing the goals? These are the scientific questions
that we wish to answer in this paper.

A deep understanding of multiple-goal pursuant behav-
ior is essential when we wish to model users’ activities
from observed action sequences. In daily life, a user
may accomplish multiple goals within a single sequence
of actions where users may achieve one goal, switch to
another goal, then return to a previous goal, or do so
for several sets of goals in a concurrent manner. We
model multiple goals mainly by two features, namely
concurrency and interleaving, where concurrency means
several goals are pursued in the same time slice and in-
terleaving means goals are pursued non-consecutively,
in that one goal is paused and then resumed after a
while during which time another goal is being pursued.

For example, it is common for an individual to watch
TV and answer the telephone at the same time con-
currently. As an example of interleaving goals, an in-



Single actor Two actors
Goals are compatible Goal synergy Goal concord
Goals are not compatible Goal conflict Goal competition

Table 1. Wilensky’s four-way classification of multiple goal states

dividual may be having his breakfast when the water
boils, so he has to pause the activity of having break-
fast and attend to the water boiling activity. Then he
may return to the previous goal of having his break-
fast. If these features, i.e., concurrent and interleaving
goals, are taken into consideration, we can potentially
improve the recognition accuracy of many real world
activity recognition applications. We call this compu-
tational problem the multiple-goal recognition problem.

The problem of understanding multiple goals has previ-
ously been studied by researchers in many disciplines
other than computer science. In psychology, it was
pointed out in [17] that “unlike the sequences directed
to a single main goal in a simple or technical plan, hu-
man intended action is influenced by multiple goals”.
Furthermore, as early as 1983, it was argued by Wilen-
sky[29] that the main characteristic of human planning,
as compared with technical planning, is the ability to
reason about the problems arising from multiple goals.
He also proposed a four-way classification of multiple
goal states (see Table 1). Therefore, understanding mul-
tiple goals is important not only for computer scientists,
artificial intelligence or ubiquitous computing commu-
nity, but also for natural sciences as a whole.

In educational psychology, different types of goals have
been identified to be pursued by students when accom-
plishing academic tasks, such as performance goal, task
goal and work avoidance goal[1] and it was reported
that more than one goal may be simultaneously op-
erative[16]. It was suggested that cognitive and self-
regulatory processes depend partly on the joint and in-
teractive effects of multiple goals more precisely than
on single goals, so that it is likely that their combined
impact may differ from their individual effects and sev-
eral goals can interact in complementary ways to jointly
regulate achievement behaviors l[24, 25]. It is also very
important to other researchers including cognitive sci-
ence, anthropology and behavioral psychology.

In this paper, we attempt to answer the above ques-
tions from two angles. We first investigate the available
benchmark data from a real world ubiquitous comput-
ing environment, whereby we show that pursuing multi-
ple goals is commonplace in human activities. We then
propose an algorithm to recognize these goals accurately
entirely from sensor readings. We show that different
recognition accuracies can be obtained at different levels
of granularity in a taxonomic goal hierarchy.

Our algorithmic solution is to solve the multiple-goal
recognition problem using a variant of the Conditional
Random Field (CRF) model, which is called SCCRF

(Skip Chain Conditional Random Field) [27], where
concurrent activities can be modeled as the hidden states
in the CRF. However, it is not trivial to combine in-
terleaving and concurrent activities in a unified CRF
framework with acceptable speed and accuracy. Our
proposed approach is to combine a skip-chain CRF for
modeling interleaving activities with a correlation goal
graph for modeling concurrent activities. We will evalu-
ate our algorithm in several ubiquitous computing datasets
to demonstrate the effectiveness of our algorithm. We
will further show that our algorithm can achieve differ-
ent levels of recognition accuracy when the activities we
are supposed to be recognizing are more fine-grained or
coarse-grained, i.e. fall into different complexity levels
or different granularities.

RELATED WORK
Activity recognition has attracted the interest of perva-
sive computing community for a long time. Patterson
developed methods to infer high-level behaviors from
low-level sensors by building a hierarchical Dynamic
Bayesian Network (DBN) and analyze the model by
taking the relationships between inter time slice and
intra time slice into consideration[21]. This approach
was used in an application to provide cognitive assis-
tance with transportation services[22]. MIT’s PlaceLab
has also done several works in acquiring the sensor read-
ing data in a live-in laboratory for future research, and
has made such data publicly available[15, 10]. Other
research areas can also be related to the activity recog-
nition area in pervasive computing community, such as
human identification from the object usage patterns,
recorded by RFID sensors[9], etc.

Outside of pervasive computing, activity recognition
finds its way in many other research areas of computer
science as well. One can find related research in the
computer vision area, which concerns tracking moving
people and objects from video captures[4]. In sensor-
based activity recognition research [7, 30, 14], work has
been done that uses GPS, RFID and other electromag-
netic sensors, as well as Wi-Fi routers and clients. In
natural language understanding, human discourses are
a major form of input from which one can recognize the
intent of agents [2].

In artificial intelligence, there are two major approaches
in solving the problem of activity recognition: logic
or consistency based approaches, and probabilistic ap-
proaches. Early approaches of activity recognition [11]
were based on logic and were described as a logical in-
ference process of circumscription, where a recognizer’s
knowledge is represented by a set of first-order state-
ments called event hierarchy encoded in first-order logic.



However, logic-based approaches have limitations in dis-
tinguishing among consistent plans and have problems
to handle uncertainty and noise in sensor data.

Despite having its deep roots in knowledge representa-
tion, over the years it is realized that a large portion of
this field concerns statistical modeling. In sensor-based
activity recognition, which is especially challenging due
to the inherent noise of the input, machine learning in
activity recognition has been done in a layered form,
where recognition at several intermediate levels is con-
ducted in a serialized manner. From the lowest level
where the sensor data is collected, a learning-based ap-
proach concerns how to find detailed locations of agents.
At the intermediate level, learning may be concerned
with how to recognize individual activities from the in-
ferred locations at the lowest level. For example, re-
search has been done on recognizing the transportation
modes of agents[13], basic action sequences from sim-
ple sensors [20] as well as from the locations of agents
in an indoor environment[18, 19]. Furthermore, at the
highest level of consideration, a major issue is to find
out the overall goal or subgoals of an agent from ac-
tivity sequences. Nevertheless, as pointed out by [12],
although these different levels emphasize different as-
pects of human activities, their essential goals are the
same.

In learning-based approaches, state-space based models
are especially attractive with the underlying assumption
that there exist hidden states that represent the activ-
ities and goals, and that the hidden states are evolv-
ing. State-space based models enable the inference of
hidden states given the observations up to the current
time. They are suitable for modeling high-level hidden
concepts given the low-level observations; examples in-
clude Bui’s AHMEM [6], aggregate dynamic Bayesian
networks [20], conditional random fields with its many
variants [28].

PROBLEM STATEMENT
In this section, we first describe an example domain
where we highlight the necessity of considering multiple
goals. We then give a classification of different types
of multiple goals. Finally we give an overview of our
algorithm for multiple goal recognition.

Multiple Goals in the Real World
Consider a real-world ubiquitous computing environ-
ment, what will be the proportion of multiple goals,
when we consider the features of concurrency and in-
terleaving? What will be the proportion of multiple
goals at different levels of goal hierarchy? What will be
the relationship between recognition accuracy and goal
hierarchy? All these questions should be answered with
respect to a taxonomy of goals.

We use the MIT PlaceLab House n PLIA1(“PlaceLab
Intensive Activity Test Dataset 1”) for illustrating the
taxonomic nature of multiple goals. This dataset was

recorded on Friday March 4, 2005 from 9 am to 12
noon with a volunteer familiar with Placelab. The ac-
tions performed were correctly recorded and labeled in
this dataset. Thus, we first manually construct the
goal hierarchy from MIT PLIA1 dataset. The low-
est level, where the activities are extracted from the
original data, includes activities such as “sweeping”,
“washing-ingredients”, etc. We combined some of the
relevant activities to a more generalized activity and
constructed the medium level, which include some higher
level activities like “preparing ingredients”, “Dealing-
with-clothes”, etc. Next, we divi1ded all the activities
into 9 categories, which compose our highest level to
include: cleaning indoor, yard-work, laundry, dishwash-
ing, meal-preparation, hygiene, grooming, personal and
information/leisure.

A partial description of the goal taxonomy is shown in
Figure 2. The complete description of the goal taxon-
omy is omitted here due to space constraint.

Do we have concurrent and interleaving goals under the
definition of such a goal hierarchy? The answer is yes.
In a goal recognition algorithm, usually a “window size”
is empirically determined so as to define the minimum
time slice we consider. We illustrate a segment of activ-
ity sequence in the PLIA1 dataset under different levels
of goal hierarchy to show the existence of concurrent
and interleaving goals. In this illustration, the “win-
dow size” is set as one minute.

Figure 1. Illustration of a segment of action sequence,
where the left sequence from top down shows a low-level
multiple goal layout by time, and the sequence on the
right shows that of the high level goals

In Figure 1, we extracted an activity sequence from
09:30am to 09:35am and set the “window size” as one
minute. From the figure, we can see the existence of
concurrent and interleaving goals, and that concurrent
goals are more frequent than interleaving goals. For ex-
ample, at 09:33am, three goals happen at the same time,
in the low level, they are represented as “Retrieving



ingredients / cookware”, “Dishwashing-miscellaneous”
and “Cleaning a surface”, while in the high level, they
are represented as “Meal-preparation”, “Dishwashing”
and “Cleaning Indoor”. However, both two representa-
tions show a case of the existence of concurrent goals.

For interleaving goals, in the high level representation,
the goal pursued at 09:31 am was “Cleaning Indoor”,
while the goal pursued at 09:33am was also “Cleaning
Indoor”, which shows an example of interleaving activ-
ities. Intuitively, we may think that interleaving goals
will increase when we move up in the goal hierarchy,
which seems to be the case.

Another phenomenon worth mentioning is that, when
we move up the goal hierarchy, i.e. when the activities
become more coarse-grained, some activities may merge
together to form one activity. For example, consider the
action sequence in 09:34am and 09:35am, at the lowest
level, the activities happened were “Cleaning a surface”
and “Mopping”, while these two activities both belong
to the “Cleaning Indoor” activity in the high level.

As we can see from this taxonomy and Figure 1, when
we go deeper in the hierarchy, more goals will appear.
Similarly, as we go deeper, the granularity of goals is
also getting more refined. We can see that at the highest
level of the taxonomy, there are only around a dozen
goals. Thus, we expect that when we perform activity
recognition at the higher levels of this taxonomy, less
concurrent and more interleaving goals will be observed.
We will confirm this fact through experiments later in
the paper.

Furthermore, as we can observe, at the second and
third levels, the goals are becoming increasingly de-
tailed, making it more difficult to tell one goal from
another based on a same set of sensors. Thus, we also
expect the number of sensors to increase in order to
provide various kinds of sensor reading data, as we go
down the hierarchies further.

As we discussed above, in different levels of goal hier-
archy, there will be different degrees or proportions of
multiple goals, and the complexity levels of goals will
be different as well. Furthermore, some activities may
be merged to form single activities as we move to the
high level. Since the observed action sequences show
different behavior in terms of the number of goals when
we view them at different levels of a goal hierarchy, it
is therefore necessary to consider the goal recognition
questions in a hierarchical manner.

Types of Multiple Goals
Many previous works on activity recognition tackled the
goal-recognition problem in a single activity setting. To
help understand the multiple-goal activities better, in
this section, we classify the common patterns of goal or
activity composition in action sequences into five types.
(See Figure 3) However, the previous approaches only

Figure 2. Goal Hierarchy: Subfigure 1

tried to tackle Type 1 and Type 2 (Single Goal / Mul-
tiple and Independent Goals). As we described in last
section, in real-world scenarios, it is very important to
solve goal composition types 3, 4 and 5, where we can
model interleaving and concurrent goals.

Note that although it is impossible for us to tell from the
sensors whether two goals are in concord or competition
relationship as indicated by Wilensky [17], as we do not
know from the sensor readings the details of each action,
we do know whether two goals are being pursued at the
same time or not. Thus, as a result, we can classify
goals into different types of composition as indicated in
Figure 3.

In our algorithm, we will exploit skip-chain conditional
random field (SCCRF) for modeling interleaving goals.
It is especially attractive for our model since we can
add skip edges between non-consecutive actions which
are believed to be pursuing the same goal. Furthermore,
CRF-based methods make no assumption on the depen-
dence structure between different observations, thus it
can model more complex relationships and collectively
label all the data.

PROPOSED APPROACH

Modeling Interleaving Goals via CRF
In this and next section, we describe our approach in
recognizing multiple goals from sensor readings.



Figure 3. Ways of goal composition in activity sequences

In this section, we first focus on modeling interleaving
goals. An example of interleaving goals is illustrated by
the following example. As an example, a person may go
to the general office to get the projector for the “sem-
inar” goal, then goes to the printing room to pick up
the printing material out for the “printing” goal. He
may then go towards the seminar room. Through this
example, we note that the “get projector” and “go to-
wards seminar room” activities may have long-distance
dependencies because the seminar goal is paused when
the professor goes to the printing room.

We choose skip-chain CRF as proposed in [26] to model
the interleaving goal issue for the following reasons.
Skip-chain CRF has been extensively used in natural
language processing (NLP), where the problem of Named
Entity Recognition (NER) has similarities with the multiple-
goal recognition problem to model the correlation be-
tween non-consecutive identical words in a text docu-
ment.

Skip-chain CRF also has an advantage in modeling un-
certainty in the real world, and allows posterior proba-
bilities to be learned from the training data to add the
skip edges.

In our model, each skip-chain CRF infers whether an
individual goal is active or not, given a newly observed
activity (See Figure 4). For long-distance dependen-
cies, for each goal Gk, we first infer the action-transition
probability P (Ai|Aj , Gk) (Gk is shown as Goal 1 in Fig-
ure 4), which stands for the probability of the following
situation: given that the goal being pursued is Gk, the

Figure 4. Activity sequence decomposed into goal se-
quences

last action in the process of pursuing goal Gk is Aj and
the next activity being Ai. Maximum Likelihood Es-
timation (MLE) can be used to learn this probability.
We simplify the model by assuming that the prior dis-
tribution is uniform.

In the skip-chain CRF (SCCRF) model, a second type
of potential is added to represent long-distance edges.
For each of the m goals under consideration, we build
a corresponding SCCRF model, with the ith SCCRF
being used to infer whether the goal Gi is active given
the set of observed activity sequences as training data.
For a factor graph G = (V, E), a linear-chain CRF can
be set up with additional long-distance edges between
activities Ai and Aj such that P (Ai|Aj , Gk) > θ (Refer
to Figure 5 for an illustration), where θ is a parameter
that can be tuned to adjust the confidence of such long-
distance dependencies.

For an observation sequence x, let I = {u, v} be the set
of all pairs of activities for which there are skip edges
connected with each other. Then the probability of a
label sequence y given an observation activity sequence
x is:

p(y|x) =
1

Z(x)

n∏
t=1

Ψt(yt, yt−1,x)
∏

(u,v)∈I

Ψuv(yu, yv,x).

(1)

In the above Equation 1, Ψt are the factors defined for
linear-chain edges and Ψuv are the factors defined over
the skip edges. (Also refer to Figure 5 for illustration)
Z(x) is the normalization factor. We define the poten-
tial functions Ψt and Ψuv in Equation 2 and Equation
3 as:

Ψt (yt, yt−1,x) = exp

(∑

k

λ1kf1k (yt, yt−1,x, t)

)
(2)



Ψuv (yu, yv,x) = exp

(∑

k

λ2kf2k (yu, yv,x, u, v)

)
(3)

λ1k are the parameters of the linear-chain template and
λ2k are the parameters of the skip-chain template. Each
of them factorize according to a set of features f1k or
f2k.

Figure 5. Illustration of the SCCRF model

Exact inference in CRFs is computationally expensive,
and therefore we set a maximum number of iterations.
We learn the weights λ1k and λ2k for the skip-chain
CRF model by maximizing the log-likelihood of the
training data, which requires calculating the partial deriva-
tive and optimization techniques. We omit the detailed
algorithm of inference and parameter estimation of the
skip-chain CRF model, but refer the readers to [27].

Modeling Concurrent Goals via Goal Graphs
We apply correlation analysis to tell when related goals
may be be pursued together. For example, it may be
more likely that a “eating-dinner” goal is carried out
when a “sitting-at-table” goal is simultaneously carried
out. We wish to use the training data to build a corre-
lation graph of goals, where two goals are related by an
edge with a large positive weight in [0, 1] if they have
strong positive correlations. We omit the considerations
of negative correlations here, which we leave for future
work. To simplify our model, we only consider the prob-
ability P (Gi|Gj) using our goal graph explicitly.

From the training data, we can learn the posterior prob-
ability P (Gi|Gj) and use it as the initial similarity ma-
trix. We take the posterior probability of each pair of
goals and define an m×m initial similarity matrix S as
S[i, j] = P (Gi|Gj).

Since the training data may be sparse, the posterior
probability we get from the training data may not be
so reliable. [3] proposed a method for computing the
similarity matrix between vertices of different graphs.
We adapted their method for modeling the similarity
between vertices of the same graph. We build a directed
graph G = 〈V, E〉, where the vertices V indicate differ-
ent goals and e = 〈ga, gb〉 indicates that a goal ga and
a goal gb have some kind of connection, so that when
ga appears, gb is also likely to appear. The similarity
matrix can be updated through iterations of Sk+1 =
ASkAT + AT SkA, where A denotes the adjacency ma-
trix of the similarity graph. After creating the similarity

matrix S, we can model concurrent goals by minimiz-
ing the differences between strong correlated goals to
ensure that they will appear together. As a result, our
top-level inference consists of minimizing the following
objective function with similarity matrix S and initially
inferred probabilities P

′
= {P ′

1, P
′
2, . . . , P

′
m} as well as

our desired output P = {P1, P2, . . . , Pm}.

min
∑

i,j∈{1,...,m}
(Pi − Pj)2Sij + µ(Pi − P

′
i )

2 (4)

In a more detailed analysis, we show that the optimiza-
tion problem mentioned above can be formulated as a
quadratic programming (QP) problem and solved using
standard techniques in QP (a more detailed description
can be found in [5]).

EXPERIMENTAL RESULTS
In this section, we try to answer the questions we pose
out at the very beginning, i.e. what is the proportion of
multiple goal pursuance in a real-world scenario, given
a specific coarse level in the goal hierarchy? Is it nec-
essary to model the phenomenon of concurrent and in-
terleaving goals in the goal recognition algorithm? Can
we recognize the different goals accurately using our
proposed method? What is the relationship between
different recognition accuracy and levels of goal hierar-
chy? We plan to answer these questions through our
experimental results.

Do Humans Pursue Multiple Goals?
We analyze the proportion of concurrent goals by look-
ing deeper into the MIT PLIA1 Dataset, upon which
we had built the goal hierarchy. We counted the pro-
portion of multiple goals over the number of all goals in
the three different levels of goal hierarchy. Another pa-
rameter we are changing is the “window size”, which is
the length of a time slice upon which we define “concur-
rency”. It is natural to imagine that, when the “window
size” approaches zero or is very small, no concurrency
will actually occur since we can always decompose hu-
man activities into segments of interleaving activities.

We show the statistics of the proportion of multiple
goals in the following Figure 6. The x-axis denotes dif-
ferent values of “window size” and the y-axis denotes
the proportion of multiple goals in the action sequence.
This proportion is defined as the ratio of time slices
during which there exist concurrent goals and the total
number of time slices, over all activity sequences, given
a specific window size.

From the above figure, we can see that the proportion
of multiple goals in a real-world action sequence is rela-
tively large; i.e. it is very important to model multiple
goals in activity recognition. In addition, it can be ob-
served from Figure 6 that the proportion of concurrent
goals increases as the granularity of activities becomes
less fine-grained. Since as we go up alongside with the



Figure 6. Statistics of multiple goal proportion

goal hierarchy, some fine-grained goals that are not con-
current at the low level will be classified into the same
category and hence becomes concurrent. This concurs
with our intuition.

Another interesting question is whether there will be
more concurrent goals after a user has started an activ-
ity sequence for a while. Likewise, we wonder if there
will be fewer concurrent goals towards the end of an
activity sequence. Towards answering these questions,
we gather additional statistics from the MIT PLIA1
dataset, where the results are shown in Figure 7. In
this figure, we have divided the whole activity sequence
in all test data into five parts, which are denoted as
“1st, 2nd, 3rd, 4th, 5th”, respectively, in the figure. We
then counted the average number of concurrent goals in
each time phase. For this dataset, we can see that con-
current goals occur maximally in the the middle of the
activity sequence. This indicates that it is necessary
for us to allocate more sensors for detecting multiple
goals towards the middle of a long activity sequence.
It would be interesting to test whether this assumption
holds for other ubiquitous computing datasets in a more
statistically significant manner.

Figure 7. Average number of concurrent goals in differ-
ent phases of activity sequence

How Accurately Can We Predict Multiple Goals?

In this section, we will present the experimental results
on the performance of our algorithm. We will test our
algorithm through two different datasets, where the first
dataset is collected from an indoor Wi-Fi environment
in a university department building, and the second
dataset comes from MIT Placelab.

To set up the experiments, we need to compare our al-
gorithm with a commonly used baseline. As we have re-
viewed in Section 2, many previous goal recognition ap-
proaches follow a single-goal recognition strategy. Thus,
we have chosen to use Naive Bayes algorithm as our
baseline algorithm, which only focuses on a single goal
setting. We would like to observe whether this baseline
will reduce the recognition accuracy significantly when
we consider single goals only.

Naive Bayesian classifiers are shown to perform very
well in many machine learning applications [8]. For clas-
sification, this algorithm computes the posterior prob-
ability P (Gj |x) of sample x belonging to class Gj ac-
cording to the Bayes’ rule:

P (Gj |x) =
P (x|Gj)P (Gj)

P (x)
,

where

P (x|Gj) =
|S|∏

m=1

P (Sm = vm,k|Gj)

is the product of |S| likelihoods. |S| is the number
of sensors readings, where each collection of sensor in-
stance data is represented as a vector x, and vm,k is a
possible value of the sensor Sm. Then, a sample x is pre-
dicted to a goal j∗ that has the highest value P (Gj∗ |x).
If the sensor readings are continuous valued, as in the
case of the Wi-Fi data, we will use a probability density
function for each of the factors in the product.

For both domains, we will use cross validation to get
the recognition accuracy and the recognition accuracy
is defined as the percentage of correctly recognized goals
over the number of all goals. Also, we test different
parameters of our approach to show that the accuracy
is reliable under different parameter settings.

The first domain is from [7] where the observations are
obtained directly from sensor data and the activities
correspond to that of a professor walking in a university
office area. In this data set, nine goals of a professor’s
activities are recorded, 850 single-goal traces, 750 two-
goal traces and 300 three-goal traces are collected so
that the dataset can evaluate both multiple-goal recog-
nition and single-goal recognition. We used three-fold
cross validation for training and testing.

Experimental results are shown in Table 2. In this
dataset, there is only one flat hierarchical level. Thus
we only show the comparison of the algorithms at one
level. The comparison result is as shown in the second
column of Table 2, where the bottom figure shows the



accuracy of Naive Bayes algorithm in the 3-fold cross
validation. The remaining figures show the results from
our algorithm under different parameter settings. As
we can see, on average, our algorithm performs 13% to
30% better than the single goal approach.

Algorithm Accuracy (Variance)
θ = 0.5, µ = 0.4 88.2%(1.5)
θ = 0.5, µ = 0.5 87.3%(1.7)
θ = 0.5, µ = 0.6 88.4%(1.6)
θ = 0.6, µ = 0.4 91.3%(1.8)
θ = 0.6, µ = 0.5 92.0%(2.0)
θ = 0.6, µ = 0.6 91.8%(2.3)
θ = 0.7, µ = 0.4 94.0%(2.7)
θ = 0.7, µ = 0.5 94.8%(2.4)
θ = 0.7, µ = 0.6 94.2%(2.7)
θ = 0.8, µ = 0.4 93.7%(2.9)
θ = 0.8, µ = 0.5 93.2%(2.5)
θ = 0.8, µ = 0.6 92.9%(2.6)

Naive Bayes 64.8%(1.5)

Table 2. Recognition accuracy: WiFi dataset

For the Wi-Fi dataset, we have only a flat hierarchy
and thus cannot answer the question of the relationship
between the recognition accuracy and the granularity of
recognizing goals. This is not the case with the second
dataset, which is the MIT PlaceLab PLIA1 dataset. In
this dataset, we are using location information to pre-
dict what activity the user is currently pursuing. We
choose different levels in the goal hierarchy and pre-
dict the corresponding goals in the low level, medium
level and the high level, where the result of each level is
shown in the second, third and fourth columns of Table
3, respectively.

In Table 3, the lowest level means the level that de-
scribes activities such as “Hand-washing-dished”, “Washing-
ingredients” while the medium level means the level
that describes activities like “Preparing-ingredients”,
“Preparing-food” etc. The highest level describes activ-
ities like “Meal-preparation” and “Hygiene”. Detailed
descriptions of levels of different goal hierarchy can be
found in Figure 2. Note that we had only included one
subfigure, the other two subfigures are omitted due to
space constraints.

From Table 3, we could see that we can indeed achieve
recognition accuracy of acceptable performance in a real-
world multiple activity recognition scenario. Also, by
setting different levels of granularity or choosing differ-
ent levels in the goal hierarchy, one can achieve different
levels of recognition accuracy. Our experimental results
confirm our earlier intuition that coarse-grained activ-
ity recognition tends to achieve higher accuracy than
fine-grained ones. We will discuss this phenomenon in
the next section. Some possible and intuitive expla-
nations are that, when viewing these sensor readings
as data instances in a high-dimensional space, we are
trying to find the decision boundaries between different
goals. The decision boundaries between low-level goals

Algorithm Low-level Medium-level High-level
θ = 0.5, µ = 0.4 80%(3.7) 82%(4.1) 89%(3.9)
θ = 0.5, µ = 0.5 79%(3.8) 83%(3.9) 91%(4.5)
θ = 0.5, µ = 0.6 80%(3.2) 82%(4.0) 91%(3.7)
θ = 0.6, µ = 0.4 80%(3.6) 84%(4.1) 92%(2.8)
θ = 0.6, µ = 0.5 83%(3.9) 85%(4.0) 94%(3.5)
θ = 0.6, µ = 0.6 87%(3.8) 84%(3.6) 93%(4.2)
θ = 0.7, µ = 0.4 84%(3.6) 85%(2.6) 96%(2.7)
θ = 0.7, µ = 0.5 86%(3.1) 85%(3.3) 94%(2.8)
θ = 0.7, µ = 0.6 85%(2.9) 85%(3.0) 95%(2.9)
θ = 0.8, µ = 0.4 83%(3.3) 88%(3.1) 93%(3.0)
θ = 0.8, µ = 0.5 82%(3.6) 87%(3.2) 93%(3.0)
θ = 0.8, µ = 0.6 83%(3.4) 88%(2.8) 93%(3.3)

Naive Bayes 41.0%(1.2) 47.2%(1.5) 51.2%(1.3)

Table 3. Recognition accuracy in different granularity
levels of MIT PlaceLab dataset in different levels of the
goal hierarchy

may be difficult to find due to the fact that these data
themselves have much noise and it is difficult to draw
the decision boundaries. However, when we move up to-
wards the higher levels, the confusion between different
goals appear to be smaller and the decision boundaries
are therefore much clearer than the case at the lower
level.

Another question we wish to investigate is the sensi-
tivity of different sensors. In the above experiment on
MIT PLIA1 Dataset, we were using the location sen-
sor for activity recognition, and it can be seen that the
recognition accuracy will be different in different levels.
PLIA1 dataset also provides other sensors apart from
the “Wireless static” sensor, which measures the move-
ment of an object to which it is attached while sending
data to receivers through wireless channels. It also in-
cludes sensors such as the wired humidity sensor, wired
pressure sensor, wired light sensor, etc.

Was the difference in the observed recognition accuracy
caused by the intrinsic nature of goal recognition prob-
lem or by the sensitivity of various kinds of sensors in
this test environment? We present some preliminary re-
sults that might answer this question. Instead of using
the location data to estimate user activities, we further
used humidity, pressure and light sensor readings for
the same task and also tested them in different levels
of goal taxonomies. The results are shown in Table 4.
Note that, due to time constraint, we need to simplify
this experiment to the case where the parameter setting
is chosen as θ = 0.7, µ = 0.5.

Sensor data Low-level Medium-level High-level
Wired humidity 71%(1.8) 75%(2.4) 78%(2.2)
Wired pressure 68%(2.3) 71%(1.9) 70%(2.5)

Wired light 69%(1.9) 73%(3.0) 75%(2.8)

Table 4. Recognition accuracy using different kinds of
sensors

As can be seen from Table 4, the same phenomenon



in changing accuracy can be observed even when we
use other kinds of sensors. This lends support to our
claim that the recognition accuracy is more related to
the granularity of goals, which corresponds to the level
in the taxonomy of goals to which we designate for the
activity recognition problem.

CONCLUSIONS AND FUTURE WORK
In this paper, we studied the problem of goal recogni-
tion in real world ubiquitous computing environments.
We posed two fundamental questions at the beginning
of the paper: (1) how often do users pursue concur-
rent and interleaving activities? and (2) is it possible
to accurately predict this behavior using sensors in a
real world activity recognition framework? By analyz-
ing publicly available datasets based on goal hierarchies,
we see that more than 30% of the observation sequence
have multiple concurrent and/or interleaving activities.
Hence, we have demonstrated the importance to ana-
lyze multiple goal settings in the problem of activity
recognition.

In addition, after demonstrating the importance of mul-
tiple activity recognition, we further developed an algo-
rithm that can accurately recognize concurrent and in-
terleaving activities. This algorithm is based on a CRF
model to reflect certain assumptions in interleaving ac-
tivities and exploited the positive correlations between
goals for modeling the concurrent activities.

However, another major problem in activity recognition
is to determine the granularity of activities we are about
to recognize. Given the close-world assumption that is
usually assumed in plan recognition or activity recogni-
tion, when we try to recognize goals based on different
levels of goal hierarchy, different recognition accuracy
will be achieved. We empirically tested the recognition
accuracy, using our multiple activity recognition algo-
rithm, to evaluate whether the algorithm can achieve
different levels of recognition accuracy. The experimen-
tal results supported our claim.

We point out several future research directions in the
multiple activity recognition framework.

First, can we do better when there are more than one
user in the action sequence? This question was first
mentioned in [15], where a new MIT House n dataset:
PLCouple was made available that included two users:
a man and a woman. Considering Table 1, where for
multiple users, they may either cooperate to achieve a
goal or compete for a goal. Understanding this scenario
is very interesting in real life.

Secondly, can we construct a goal hierarchy automati-
cally from an observation sequence? In a real world set-
ting, the number of activities individuals perform might
be very large that it is impossible to construct a goal
hierarchy by hand. If we could automatically construct,
or derive some logical relationships between high level

goals and low level goals, the resulting output, although
it may not be a complete hierarchy, will provide useful
information in constructing the final goal hierarchy.

Thirdly, in our experiments, we’ve shown that different
recognition accuracies can be achieved under different
levels of granularities. Apart from empirically set the
granularities of goal recognition, can we automatically
choose the “best” level of granularity, by a few labeled
sensor readings? This problem, if solved, can help aid
the application where a certain probability of recogni-
tion accuracy needs to be achieved. Thus it can tell the
user to what levels of granularity it can support, given
the hard constraint that the recognition accuracy must
achieve a certain probability.
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